CS 4530: Fundamentals of Software Engineering
Module 2, Lesson 3
Testing Conditions of Satisfaction

Rob Simmons
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

At the end of this lesson, you should be prepared to
* Explain the basics of Test-Driven Development

* Derive testable behaviors and tests from conditions of
satisfaction

* Begin developing simple applications using TypeScript
and Vitest

* Learn more about TypeScript and Vitest from tutorials,
blog posts, and documentation

Test Driven Development (TDD)

e Puts test specification as the critical design activity

* Understands that deployment comes when the system
passes testing

* The act of defining tests requires a deep
understanding of the problem

* Clearly defines what success means
* No more guesswork as to what “complete” means

The TDD Cycle

Analyze Design Code

Testable Executable
Behaviors Tests

CoS are ultimately about the user

We will build a secure web application backed by a
persistent database that allows an authenticated
administrator to add a new student to the database

Database Service Controller V\.IEb. User
Application

CoS are ultimately about the user

We will build a secure web application backed by a
persistent database that allows an authenticated
administrator to add a new student to the database

Database Service

The addStudent service function should add a
student to the database

Analyzing CoS to get testable behaviors

import {
StudentlID,
Student,
Course,
CourseGrade,
Transcript,
} from './types.ts’;
export interface TranscriptService {
addStudent(studentName: string): StudentID;
getTranscript(id: StudentlID): Transcript;
deleteStudent(id: StudentlID): void; // hmm, what to do about errors??
addGrade(id: Student, course: Course, courseGrade: CourseGrade): void;
getGrade(id: Student, course: Course): CourseGrade;
nameTolDs(studentName: string): StudentID[];

Analyzing CoS to get testable behaviors

CoS: The user can... Testable behaviors:
e ...add a new student to the database e addStudent should add a student to
the database and return their ID

e addStudent should return an ID distinct
from any ID in the database

 ..add a new student with the same e addStudent should permit adding a
name as an existing student student with the same name as an
existing student
» ..retrieve the transcript for a student * Given the ID of a student, getTranscript

should return the student’s transcript.

e Given an ID that is not the ID of any
student, getTranscript should ...??7?...

8

Analyzing CoS to get testable behaviors

* The user-centric satisfaction conditions didn’t give
us any guidance on the exceptional condition “not
an ID of any student”

* We need to elaborate: what should getTranscript
do?
* Possibilities:
e return an error value (undefined, -1, etc.)
 Throw an exception

* Decision: throw an exception

The tiniest introduction to Vitest

// transcript.service.ts

import {
StudentID,
Student,
Course,
CourseGrade,
Transcript,

} from './types.ts’;

export interface TranscriptService {
addStudent(studentName: string): StudentID;
getTranscript(id: StudentID): Transcript; // throws Error if id invalid
deleteStudent(id: StudentlID): void; // throws Error if id invalid
addGrade(id: Student, course: Course, courseGrade: CourseGrade): void;
getGrade(id: Student, course: Course): CourseGrade;
nameTolDs(studentName: string): StudentID[];

10

The tiniest introduction to Vitest

// types.ts - types for the transcript service

export type StudentID = number;

export type Student = { studentID: number; studentName: StudentName };
export type Course = string;

export type CourseGrade = { course: Course; grade: number };

export type Transcript = { student: Student; grades: CourseGrade([] };
export type StudentName = string;

11

The tiniest introduction to Vitest

// types.spec.ts
import { describe, expect, it } from 'vitest';
import { type Student } from './types.ts';

const alvin: Student = { studentID: 37, studentName: 'Alvin' };
const bryn: Student = { studentID: 38, studentName: 'Bronwyn' };

describe('the Student type’, () => {
it('should allow extraction of id’, () => {
expect(alvin.studentID).toEqual(37);
expect(bryn.studentlID).toEqual(38);
});
it('should allow extraction of name’, () => {
expect(alvin.studentName).toEqual('Alvin’);
expect(bryn.studentName).toEqual('Jazzhands’); // will fail
ik
ik

12

The tiniest introduction to Vitest

% npx vitest --run types.spec.ts
RUN v3.1.2 /Users/rjsimmon/r/strategytown-su25/client

) types.spec.ts (2 tests | 1 failed) 4
v/ the Student type > should allow extraction of id 1
x the Student type > should allow extraction of name 3
- expected 'Bronwyn' to deeply equal 'Jazzhands'

Failed Tests 1

FAIL types.spec.ts > the Student type > should allow extraction of name
AssertionError: expected 'Bronwyn' to deeply equal 'Jazzhands'

Expected: "Jazzhands"
Received: "Bronwyn"

types.spec.ts:

14| it('should allow extraction of name', () => {

15| expect(alvin.studentName).toEqual('Alvin');

16| expect(bryn.studentName).toEqual('Jazzhands');
| N

1703

18] });

Tests 1 failed | 1 passed (2)

13

Turning testable behaviors into Vitest tests

// transcript.service.spec.ts
import { beforeEach, describe, expect, it } from 'vitest';
import { TranscriptDB, type TranscriptService } from ‘./transcript.service.ts';

let db: TranscriptService;
beforeEach(() => {
db = new TranscriptDB();

1;

Start each test with a new

empty database

describe('addStudent’, () => {
it('should add a student to the database and return their id’, () => {
expect(db.nameTolDs('blair')).toStrictEqual([]);
const id1 = db.addStudent('blair’);
expect(db.nameTolDs('blair')).toStrictEqual([id1]);
});
});

14

Turning testable behaviors into Vitest tests

describe('addStudent’, () => {
it('should add a student to the database and return their id’, () => {

expect(db.nameTolDs('blair')).toStrictEqual([]); Assemble (and Verify)

const id1 = db.addStudent('blair’);

expect(db.nameTolDs('blair')).toStrictEqual([id1]);

1;
1;

Turning testable behaviors into Vitest tests

describe('addStudent’, () => {
it(‘should return an ID distinct from any ID in the database’, () => {
// we'll add 3 students and check to see that their IDs are all different.
const id1 = db.addStudent('blair’);
const id2 = db.addStudent('corey’);
const id3 = db.addStudent('del’);
expect(idl).not.toEqual(id2);
expect(idl).not.toEqual(id3);
expect(id2).not.toEqual(id3);
ik
ik

16

Turning testable behaviors into Vitest tests

describe('addStudent’, () => {
it('should permit adding a student w/ same name as an existing student’, () => {
const id1 = db.addStudent('blair’);
const id2 = db.addStudent('blair’);
expect(idl).not.toEqual(id2);
});
3

17

.now TDD lets us implement addStudent!

Implementing the TranscriptDB according to the TranscriptService
spec will let us turn our testable behaviors into fully executable tests.

Analyze Design Code

Satisfaction Testable Executable
Conditions Behaviors Tests

18

Review

It’s the end of the lesson, so you should be prepared
to:

Explain the basics of Test-Driven Development

Derive testable behaviors and tests from conditions of
satisfaction

Begin developing simple applications using TypeScript
and Vitest

Learn more about TypeScript and Vitest from tutorials,
blog posts, and documentation

	Default Section
	Slide 1: CS 4530: Fundamentals of Software Engineering Module 2, Lesson 3 Testing Conditions of Satisfaction
	Slide 2: Learning Goals for this Lesson
	Slide 3: Test Driven Development (TDD)
	Slide 4: The TDD Cycle
	Slide 5: CoS are ultimately about the user
	Slide 6: CoS are ultimately about the user
	Slide 7: Analyzing CoS to get testable behaviors
	Slide 8: Analyzing CoS to get testable behaviors
	Slide 9: Analyzing CoS to get testable behaviors
	Slide 10: The tiniest introduction to Vitest
	Slide 11: The tiniest introduction to Vitest
	Slide 12: The tiniest introduction to Vitest
	Slide 13: The tiniest introduction to Vitest
	Slide 14: Turning testable behaviors into Vitest tests
	Slide 15: Turning testable behaviors into Vitest tests
	Slide 16: Turning testable behaviors into Vitest tests
	Slide 17: Turning testable behaviors into Vitest tests
	Slide 18: …now TDD lets us implement addStudent!
	Slide 19: Review

